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Abstract. We investigate the nature of particular solutions to the ultradiscrete Painlevé
equations. We start by analysing the autonomous limit and show that the equations possess
an explicit invariant which leads naturally to the ultradiscrete analogue of elliptic functions.
For the ultradiscrete Painlevé equations II and III we present special solutions reminiscent of
the Casorati determinant ones which exist in the continuous and discrete cases. Finally we
analyse the discrete Painlevé equation I and show how it contains both the continuous and the
ultradiscrete ones as particular limits.

1. Introduction

The study of integrable cellular automata (CA) has received a substantial boost recently with
the introduction of the ultradiscretization method which allows asystematicconstruction
of CA’s starting from a given discrete system [1]. At the heart of the method lies the
transformation which relates the variable of the discrete systemx to that of the ultradiscrete
X, through x = eX/ε . An essential requirement is that the variables of the discrete
equation assume onlypositive values. In practice this means that the ultradiscretization
will isolate the positive solutions of the discrete system. In order to obtain a CA
one performs that limitε → +0. The cornerstone of the procedure is the identity
limε→+0 ε log(ea/ε + eb/ε) = max(a, b). Thus, ifa, b are integer, the result of the operation
max(a, b) will give an integer value.

The ultradiscretization approach has made possible the systematic derivation of the CA
analogues of a host of integrable evolution equations. In a recent work, we have presented
the ultradiscrete forms of paradigmatic integrable systems: the Painlevé equations (Ps) [2].
Our approach was based on the ultradiscretization procedure applied to the known discrete
forms of the Ps. In order to ensure the positivity requirement the discrete forms considered
were the multiplicative ones, i.e. theq-Ps. Thus, for example, we start from the three
expressions ofq-Painlev́e I equation (q-PI) [3]:

xσn xn+1xn−1 = zxn + 1 (1.1)
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whereσ = 0, 1, 2, z = λn. From (1.1), withλ = e1/ε , we obtain the ultradiscrete forms:

Xn+1+Xn−1+ σXn = max(0, Xn + n). (1.2)

Ultradiscrete forms have been proposed for all the Ps. One important question that can be
raised at this point is whether the ultradiscrete Ps (u-Ps) are indeed Ps. That latter have
been proposed, initially in a continuous setting, as equations defining new transcendents,
thus extending the special functions to the nonlinear domain. It is by now clear that the
discrete Ps also fulfil the basic requirements and can be considered as defining new functions
(of the appropriate discrete variable). However, the same depth of analysis is far from being
reached for u-Ps. Thus, it is important that the properties of these new equations be studied
in detail. In this paper we shall examine the particular solutions of the u-Ps II and III.
In the discrete case, as well as the continuous one, the Ps are known to possess particular
solutions for special values of their parameters. We shall show that the same holds true
for the u-Ps and give the ultradiscrete analogue of the Casorati determinant-type solutions
which have been established for the continuous and discrete Ps [4].

In section 2 we shall start with a simpler problem namely that of the autonomous limit
of the u-Ps. In the continuous and discrete autonomous cases, the solutions are explicitly
known to be elliptic functions. We study here the ultradiscrete equations and establish an
integral of motion (which exists only in the autonomous limit). This integral would define
the ultradiscrete analogue of the elliptic functions. However, in contrast to the continuous
and discrete cases this does not seem possible. Thus we address directly the question of the
ultradiscrete analogue of elliptic functions and show how the latter can be systematically
constructed. Section 3 is devoted to the special solutions of u-PII and u-PIII : these are the
ultradiscrete analogues of the Casorati determinant rational solutions of the continuous and
discrete Ps. Finally, we examine the ultradiscrete Painlevé I equation (u-PI). The Painlev́e I
(PI) equation does not have any particular solutions. Still, it is very interesting to study the
discrete PI equation and show how its solution contains the ones of the continuous as well
as of the u-PI. The transition from one to the other is mediated by the sign of the parameter.
By changing this parameter we can move from a strictly positive, CA-like solution to the
typical PI solution with poles on the negative real axis.

2. Autonomous ultradiscrete equations and elliptic functions

Before proceeding to the study of special solutions of the u-Ps, let us start with a simpler
example, that of their autonomous limits. It is well known that the autonomous limits of
continuous and discrete Ps are solved in terms of elliptic functions [5]. In all these cases
the second-order equation can be integrated once and it turns out that the resulting integral
is just a known addition formula for elliptic functions. We can thus wonder whether these
properties cross over to the ultradiscrete case.

Let us start with the multiplicative autonomous form of the discrete Painlevé I equation
(d-PI):

xσn xn+1xn−1 = αxn + 1. (2.1)

It is easy to show that all these cases possess an invariant. Thus we have forσ = 0

x2
n + x2

n−1+ α(xn + xn−1)+ 1= kxnxn−1 (2.2a)

for σ = 1

x2
nx

2
n−1+ αxnxn−1(xn + xn−1)+ (α2+ 1)(xn + xn−1)+ α = kxnxn−1 (2.2b)
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for σ = 2

x2
nx

2
n−1+ α(xn + xn−1)+ 1= kxnxn−1. (2.2c)

Starting with these expressions, it is very easy to construct the invariants for the ultradiscrete
case. Let us work this out explicitly in theσ = 2 case. The ultradiscrete equation reads:

Xn+1+Xn−1+ 2Xn = max(Xn + A, 0) (2.3)

and the ultradiscretization of the invariant (2.2c) leads to

K = max(Xn +Xn−1, A−Xn,A−Xn−1,−Xn −Xn−1). (2.4)

Let us now show that (2.4) is indeed a conserved quantity of (2.3). Starting from (2.4) and
usingXn−1 = max(Xn + A, 0)− 2Xn −Xn+1, we obtain

max(Xn +Xn−1, A−Xn,A−Xn−1,−Xn −Xn−1)

= max(max(Xn + A, 0)−Xn −Xn+1, A−Xn,−max(Xn + A, 0)

+Xn +Xn+1+Xn + A,−max(Xn + A, 0)+Xn +Xn+1)

= max(max(Xn + A, 0)−Xn −Xn+1, A−Xn,−max(Xn + A, 0)

+Xn +Xn+1+max(Xn + A, 0))

= max(A−Xn+1,−Xn −Xn+1, A−Xn,Xn +Xn+1). (2.5)

This proves thatK is indeed an invariant of (2.3).
Still, the existence of this invariant does not suffice in order to define the ultradiscrete

analogue of an elliptic function. It is easy to see that the iteration of (2.4) considered as an
ultradiscrete equation does not defineXn+1 in terms ofXn in a unique way (in particular
when the maximal term isA − Xn). Thus, we do not see how (2.4) can be used as such
for the definition of the analogue of the elliptic functions. One must use the full three-point
mapping (or find a different approach to this question). Let us first show a typical solution
of (2.3), see figure 1. The periodicity that characterizes the elliptic functions is clearly seen
in the solution.

Since the invariant, considered as a ultradiscrete equation, cannot be used to define the
ultradiscrete elliptic functions a more direct approach is needed. We must, as usually, go
back to the discrete case [6] and once the result is firmly established we can proceed to its
ultradiscretization. Let us start with the differential equation

dx√
P
+ dy√

Q
= 0 (2.6)

where

P ≡ −(x − a)(x − b)(x − c) Q ≡ −(y − a)(y − b)(y − c)
and a, b, c are constants (complex in general). A standard argument gives an integral of
the differential equation (2.6) as

(
√
P −√Q)2
(x − y)2 = −(x + y)+ C (2.7)

whereC is an integration constant. If we chooseC = a+b+c, equation (2.7) is equivalent
to the following algebraic equation:

x2y2− 2βxy + α(x + y)+ γ = 0 (2.8)
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Figure 1. A typical solution of the autonomous ultradiscrete equation (2.3) corresponding to
X0 = 0, X1 = 1, A = −4, with period 24.

whereα ≡ 4abc, β ≡ ab + bc + ca andγ ≡ a2b2+ b2c2+ c2a2− 2abc(a + b + c). This
is exactly the integral we need for the autonomous d-PI. In fact, if both(x, y) = (xn+1, xn)

and(x, y) = (xn, xn−1) satisfy equation (2.8) andxn+1 6= xn−1, we can easily show

xn+1x
2
nxn−1 = αxn + γ. (2.9)

In order to take ultradiscrete limit (u-limit), we confine ourselves to the case wherexn > 0
(for ∀n), α > 0 andγ > 0. Hence we assume

a > b > c > 0

a > x > b a > y > b

a >
bc

(
√
b −√c)2 .

(2.10)

These are sufficient conditions to the positivity we required. (It may be possible that we
can obtain another u-limit when we choose different conditions.) Then, since(x, y) in
equation (2.8) are a solution to equation (2.6), they satisfy∫ a

x

dx√
P
+
∫ a

y

dy√
Q
= constant.

Using the identity∫ a

x

dx√
P
= 2√

a − c sn−1

(√
a − x
a − b ;

√
a − b
a − c

)

≡ 2√
a − cu (2.11)
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we have a parametrization

x = a − (a − b) sn2(u; k)
y = a − (a − b) sn2(v; k) (2.12)

with u+v = ξ (constant) andk ≡
√
a−b
a−c . (Here sn(u; k), cn(u; k) and dn(u; k) are Jacobian

elliptic functions andk is the modulus.)
The constantξ is obtained as follows. Differentiating equations (2.11) and (2.12), we

find

− 1√
P
= 2√

a − c
du

dx
dx

du
= −2(a − b) snu cnu dnu.

Thus we obtain
√
P = √a − c(a − b) snu cnu dnu. (2.13)

Putting equations (2.12) and (2.13) into equation (2.7) withC = a + b + c, we obtain(
snu cnu dnu− snv cnv dnv

sn2 v − sn2 u

)2

= a − b
a − c (sn2 u+ sn2 v)+ b + c − a

a − c
= k2(sn2 u+ sn2 v)− 1+ b

a − c .
Since we knowu+ v = ξ (constant), takingu = 0 andv = ξ , we obtain

dn2 ξ

sn2 ξ
= b

a − c
or equivalently,

sn2 ξ = sn2(u+ v) = a − c
a

. (2.14)

The above relation is also obtained from the identity(
snu cnu dnu− snv cnv dnv

sn2 v − sn2 u

)2

− k2(sn2 u+ sn2 v)+ (1+ k2) = 1

sn2(u+ v)
which can be proved by the addition formulae of Jacobian elliptic functions. We should
regard equation (2.14) as the definition ofξ .

Thus we obtain an elliptic solution to equation (2.9). It is given as

xn = f (u0− nξ) (2.15)

where

f (u) ≡ a − (a − b) sn2(u; k) = a cn2(u; k)+ b sn2(u; k)
and we use the factf (−u) = f (u).

The ultradiscretization of the autonomous d-PI can be done in a straightforward way.
To begin with, we rewrite sn and cn functions in terms of elliptic theta functions. The
definitons of elliptic theta functions are

ϑ0(ν) ≡
∞∑

n=−∞
(−1)nqn

2
z2n
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ϑ1(ν) ≡
√−1

∞∑
n=−∞

(−1)nq(n−1/2)2z2n−1

ϑ2(ν) ≡
∞∑

n=−∞
q(n−1/2)2z2n−1

ϑ3(ν) ≡
∞∑

n=−∞
qn

2
z2n

wherez = exp[
√−1πν] and q is a complex constant (nome). We set

q = exp
[
−επ
θ

]
. (2.16)

Using the Poisson’s summation formulae, we get

ϑ0(ν) =
√
θ

επ

∞∑
n=−∞

exp

[
−θ
ε

[ν − (n+ 1
2)]

2

]

ϑ1(ν) =
√
θ

επ

∞∑
n=−∞

(−1)n exp

[
−θ
ε

[ν − (n+ 1
2)]

2

]

ϑ2(ν) =
√
θ

επ

∞∑
n=−∞

(−1)n exp

[
−θ
ε

[ν − n]2

]

ϑ3(ν) =
√
θ

επ

∞∑
n=−∞

exp

[
−θ
ε

[ν − n]2

]
.

The relations between Jacobian sn, cn functions and theta functions are given,

snu = ϑ3(0)ϑ1(ν)

ϑ2(0)ϑ0(ν)
cnu = ϑ0(0)ϑ2(ν)

ϑ2(0)ϑ0(ν)

with u = π(ϑ3(0))2ν ≡ Kν andk2 = a−b
a−c = ( ϑ2(0)

ϑ3(0)
)4.

We parametrizea, b, c as

c = exp

[
−ηθ
ε

]
b = c +

(επ
θ

)2
(ϑ0(0))

4

a = c +
(επ
θ

)2
(ϑ3(0))

4.

(This parametrization with (2.16) is not a unique one. There may be other parametrizations
which lead to different u-limits.) Noting the facts

ϑ0(0) ∼ 2

√
θ

επ
exp

[
− θ

4ε

]
(ε →+0)

ϑ2(0) ∼
√
θ

επ

(
1− 2 exp

[
−θ
ε

])
(ε →+0)

ϑ3(0) ∼
√
θ

επ

(
1+ 2 exp

[
−θ
ε

])
(ε →+0)

(ϑ3(ν))
4 = (ϑ0(ν))

4+ (ϑ2(ν))
4− (ϑ1(ν))

4
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we find in the limitε →+0,

a ∼ 1 b ∼ exp

[
−ηθ
ε

]
c ∼ exp

[
−ηθ
ε

]
b − c ∼ exp

[
−θ
ε

]
α = 4abc ∼ exp

[
−2ηθ

ε

]
γ = (b − c)2a2+ · · · ∼ exp

[
−2θ

ε

]
.

Sincea, b, c must satisfy the inequality (2.10) and

bc

(
√
b −√c)2 =

bc(
√
b +√c)2

(b − c)2 ∼ exp

[
− (3η − 2)θ

ε

]
(ε →+0)

we find the region ofη as
2
3 < η < 1.

We also find

(ϑ0(ν))
2 ∼

(
θ

πε

)(
exp

[
−θ
ε

[((ν))− 1
2]2

]
+ exp

[
−θ
ε

[((ν))+ 1
2]2

])2

(ϑ1(ν))
2 ∼

(
θ

πε

)(
exp

[
−θ
ε

[((ν))− 1
2]2

]
− exp

[
−θ
ε

[((ν))+ 1
2]2

])2

(ϑ2(ν))
2 ∼

(
θ

πε

)(
exp

[
−θ
ε

[((ν))]2

]
− exp

[
−θ
ε

[((ν))− 1]2
])2

where((ν)) ≡ ν − Floor(ν), and Floor(x) is the maximum integer which does not exceed
x. Thus we get the asymptotic form of Jacobian elliptic functions as

sn2 u ∼ 1 cn2 u ∼
(

exp

[
−2θ

ε
((ν))

]
+ exp

[
−2θ

ε
[1− ((ν))]

])
.

From equation (2.14) or cn2(u + v) = c
a

, we also get a relation forν ≡ 1
K
u andν ′ ≡ 1

K
v

in the limit ε →+0,

η = 2 min[((ν + ν ′)), 1− ((ν + ν ′))].
Thus we find

ν ′ = ±η
2
− ν + an arbitrary integer.

Using the identity

min[x, y] = −max[−x,−y] = lim
ε→+0
−ε log

[
exp

(
−x
ε

)
+ exp

(
−y
ε

)]
we obtain the u-limit of equation (2.9) as

Xn+1+ 2Xn +Xn−1 = max[Xn + ( 3
2 − 2η)θ, 0] (2.17)

whereX is related tox throughx = exp(X−θ/2
ε
). The elliptic solution of equation (2.17) is

obtained from equation (2.15) using the asymptotic properties of elliptic functions as

Xn = θ( 1
2 −min[η, 2νn, 2− 2νn]) (2.18)

where

νn =
((
ν0− nη

2

))
= ν0− nη

2
− Floor

(
ν0− nη

2

)
.
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It should be noted that ifxn(ε) is a solution to equation (2.9) and the limit
limε→+0 logxn(ε) ≡ Xn − θ/2 exists, thenXn is a solution to equation (2.17). This fact
proves that (2.18) is a solution to equation (2.17). (Note that equation (2.18) is invariant
under exchange ofν0− nη2 by −ν0+ nη2.)

If we set θ = p, η = q

p
and ν0 = r

p
wherep, q, r ( 2

3 <
q

p
< 1) are integers, we

can regard equation (2.17) as an evolution equation which takes values only in integers.
It is also easy to see thatXn is periodic with period at most 2p. Choosingθ , η and ν0

we can show that (2.18) reproduces exactly the solution displayed in figure 1. Thus we
have explicitly constructed the elliptic function solutions to the autonomous u-PI (2.4). In
a similar way we can proceed to the construction of the solutions of the other autonomous
forms.

3. Special solutions of u-PII and u-PIII

It is well known that the continuous and discrete Ps can be transformed into bilinear forms
involving τ functions [7]. Each of the latter is an entire function associated with the
singularity of the Ps, that is, the singularities are produced by the zeros ofτ functions
appearing in the denominator of the nonlinear variable of Ps. However, in the ultradiscrete
case, the analogues of the notions of singularity and entire function have not yet been
clearly defined. Then what is theτ function in the ultradiscrete world? In a naive sense,
an entire function does not have any factor in the denominator. Therefore it is naturally
expected that theτ function of ultradiscrete case has no term of negative sign and can
be represented as a sum of only positive terms. (This is due to the fact that the u-limit
‘lim ε→+0 ε log’ transforms the factors in the numerator into the terms with positive sign and
those in the denominator into the terms with negative sign.) Let us consider the simplest
case, the rational solutions of Ps. For the continuous Ps, theτ functions of rational solutions
are expressed by a Wronskian determinant with simple polynomial components. Also for
discrete Ps, it has been shown (at least for the cases analysed up to now) that theτ functions
of rational solutions are given in the form of a Casorati determinant, the discrete analogue
of the Wronskian. In both cases, the bilinear equations ofτs are directly obtained by using
a simple determinant identity, the so-called Plücker relation [4]. We can thus expect that the
u-Ps are transformed into an ultradiscrete bilinear form in terms ofτ functions which are
expressible as a termwise positive sum, and in that expression the derivation of the bilinear
equations becomes transparent.

In the following, we give the rational solutions of u-PII and u-PIII which are represented
in a form reminiscent of the ultradiscrete analogues of the Casorati determinant.

Let us start with the u-PII of first kind,

Xn+1+Xn−1 = max(0, n−Xn)−max(0, Xn + n− a) (3.1)

which is derived from the multiplicative d-PII ,

xn+1xn−1 = xn + z
xn(1+ αzxn) z = λn α: parameter (3.2)

by replacingx = eX/ε , λ = e1/ε , α = e−a/ε and taking the limitε → +0. Through the
variable transformation,

Xn = τn−1− τn−2 (3.3)

we obtain the ultradiscrete ‘bilinear’ equation,

τn +max(τn−2, τn−1+ n− a) = τn−3+max(τn−1, τn−2+ n). (3.4)
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We remark that in the ultradiscrete world, ‘max’ and ‘+’ should be regarded as ‘addition’
and ‘multiplication’ respectively, because eA/ε + eB/ε and eA/εeB/ε go to max(A,B) and
A+B respectively under the operation of limε→+0 ε log. Thus the above equation is indeed
the bilinear form inτ . Now (3.1) is invariant under the transformationa→−a, n→ n−a,
X → −X, thus we can assumea > 0 without loss of generality. The u-PII (3.1) admits
rational solutions fora = 4m, m: non-negative integer. Theτ function for the rational
solution is given as

τn =
m−1∑
j=0

max(0, n− 3j) (3.5)

which is also expressed as

τn = max
06j6m

(jn− 3
2j (j − 1)). (3.6)

The existence of the above two expressions is essential in the proof of the bilinear equations
as we will see below. Thisτn gives them-step solutionsXn (3.3) which havem successive
jumps of step 1 atn = 3j − 1, 16 j 6 m.

Let us consider a slightly more general form of theτ function,

τn =
m−1∑
j=0

max(0, n− jk) (3.7a)

= max
06j6m

(
jn− j (j − 1)

2
k

)
(3.7b)

wherek is positive. For positivep andq, we have

max(τn, τn+p−k + n− (m− 1)p − q) = max

(
max

06j6m

(
jn− j (j − 1)

2
k

)
,

max
16j6m+1

(
jn− j (j − 1)

2
k + (j −m)p − q

))
on the r.h.s. thej th term in the second max is less than thej th term in the first max for
16 j 6 m, thus we can drop these terms,

= max

(
max

06j6m

(
jn− j (j − 1)

2
k

)
, (m+ 1)n− m(m+ 1)

2
k + p − q

)
= max

(
0, n,2n− k, . . . , mn− m(m− 1)

2
k,

(m+ 1)n− m(m+ 1)

2
k + p − q

)
and takingp − q 6 k, we obtain

= max(0, n)+max(0, n− k)+ · · · +max(0, n− (m− 1)k)

+max(0, n−mk + p − q)
because the second arguments of the above maxima are numbers in decreasing order. Hence
we obtain

max(τn, τn+p−k + n− (m− 1)p − q) = τn +max(0, n−mk + p − q)
p > 0, q > 0, p − q 6 k. (3.8)
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Similarly we have

max(τn, τn+p−k + n+ q) = max

(
max

06j6m

(
jn− j (j − 1)

2
k

)
,

max
16j6m+1

(
jn− j (j − 1)

2
k + (j − 1)p + q

))
where thej th term in the second max is dominant for 16 j 6 m, so

= max

(
0, max

16j6m+1

(
jn− j (j − 1)

2
k + (j − 1)p + q

))
= max

(
0, n+ q, 2n+ q + p − k, . . . , (m+ 1)n+ q +mp − m(m+ 1)

2
k

)
again takingp − q 6 k, we obtain

= max(0, n+ q)+max(0, n+ p − k)+max(0, n+ p − 2k)+ · · ·
+max(0, n+ p −mk).

Thus we obtain

max(τn, τn+p−k + n+ q) = max(0, n+ q)+ τn+p−k p > 0, q > 0, p − q 6 k.
(3.9)

From (3.8) through replacingp→ p+q, n→ n−p, and (3.9) through replacingn→ n−r,
p→ k + r − p, q → r, we get the bilinear equation,

τn +max(τn−p, τn+q−k + n−m(p + q)) = τn−k +max(τn−r , τn−p + n)
06 p 6 k, q > 0, r > 0 (3.10)

where we have usedτn − τn−k = max(0, n) − max(0, n − mk) which follows from the
explicit expression ofτ (3.7a).

For k = 3, p = 2, q = 2 andr = 1, (3.10) reduces to (3.4), thus we have proved that
(3.3) and (3.5) give the solution of u-PII (3.1) with a = 4m. The remark is that expression
(3.7a) looks similar to a Casorati determinant and (3.7b) to the expansion of the determinant.
Let us recall the Casorati determinant representation ofm-soliton solution for the discrete
KP hierarchy [8]. The determinantτ consists of the products ofm components and each
component of the determinant is the sum of two terms. Expanding the determinant, we
get the expression of the sum of exponential terms. This situation is parallel to (3.7a) and
(3.7b) except for a missing ‘max’ in front of the summation in (3.7a).

Next we will consider the special solution for the u-PII of second kind,

Xn+1+Xn−1−Xn = max(0, n−Xn)−max(0, Xn + n− a). (3.11)

This is derived from another multiplicative d-PII ,

xn+1xn−1 = xn + z
1+ αzxn z = λn α: parameter (3.12)

throughx = eX/ε , λ = e1/ε , α = e−a/ε andε → 0. The ultradiscrete bilinear form of (3.11)
is

τn +max(τn−3, τn−1+ n− a) = τn−4+max(τn−1, τn−3+ n) (3.13)

whereXn = τn−1 − τn−3. For a = 6m, m: integer, there exist rational solutions of (3.12).
The τ function for the solution is given by

τn =
m−1∑
j=0

max(0, n− 4j) (3.14)
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and the bilinear equation (3.13) is just the consequence of (3.10) withk = 4, p = 3, q = 3
and r = 1. For thisτ function,Xn gives a multistep solution with the elementary pattern
of two successive jumps atn = 4j − 2 (1 6 j 6 m) followed by two steps with constant
value.

Let us proceed to the rational solution of u-PIII . We consider only a degenerate case,
namely, the case in which the u-PIII is decomposed into two parts. The u-PIII ,

Xn+1+Xn−1− 2Xn = max(0, n−Xn)−max(0, Xn + n− a)
+max(0, n−Xn + b)−max(0, Xn + n+ b) (3.15)

is derived from the d-PIII ,

xn+1xn−1 = (xn + z)(xn + βz)
(1+ αzxn)(1+ βzxn) z = λn α, β: parameter (3.16)

throughx = eX/ε , λ = e1/ε , α = e−a/ε , β = eb/ε andε →+0. Now decomposing (3.15) in
the following two equations,

Xn+1+Xn−1 = max(0, n−Xn)−max(0, Xn + n− a) (3.17a)

2Xn = max(0, Xn + n+ b)−max(0, n−Xn + b) (3.17b)

we get the bilinear equations throughXn = τn−1− τn−2,

τn +max(τn−2, τn−1+ n− a) = τn−3+max(τn−1, τn−2+ n) (3.18a)

τn−1+max(τn−1, τn−2+ n+ b) = τn−2+max(τn−2, τn−1+ n+ b). (3.18b)

The first equation (3.17a) or (3.18a) is nothing but the u-PII of the first kind, therefore
we have to prove that the solution (3.5) simultaneously satisfies the second bilinear
equation (3.18b). From (3.9) we obtain another bilinear equation,

max(τn−q1, τn−p1 + n)− τn−p1 = max(τn−q2, τn−p2 + n)− τn−p2

06 pi 6 qi + k, qi > 0 (3.19)

which gives (3.18b) by takingp1 = q2 = b + 1, p2 = q1 = b + 2 andk = 3. Hence we
have proved that the sameτ as in the rational solution of u-PII gives the solution for the
u-PIII (3.15) witha = 4m (m: integer) andb > −1.

Solutions to the higher u-Ps could be obtained following the above techniques (obviously
with considerable technical difficulties).

4. Solutions of the PI equation: continuous, discrete and ultradiscrete cases

In the previous sections, we have shown that, in perfect parallel to the continuous and
discrete cases, the u-PII and u-PIII possess special solutions. Thus, naturally, the question
arises of how does the solution of the ultradiscrete equation relate to the solution of its
continuous homologue. In order to perform this comparison we have chosen to analyse
the PI equation. The reason is that this equation does not have any special solutions and
thus an arbitrary choice of initial conditions is expected to yield the generic behaviour of
the solution. Our argument is (and has always been) that thediscrete equation captures
the essence of the behaviour of both its limiting cases, be it continuous or ultradiscrete.
In order to show this explicitly we shall consider a specific example. We start from the
discrete form of PI: xn−1xn+1 = zxn + 1 wherez = aλn. We introduce a scaling ofx and
z so as to rewrite the equation as

xn−1xn+1 = zxn + b. (4.1)
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Figure 2. Solution of the d-PI (4.1) corresponding tox0 = 0.1, x1 = 0.025,λ = 1.01, a = 0.2
andb = +0.01. The behaviour is reminiscent of the one of the ‘automaton’ equation (4.2).

We can, without loss of generality, assume thata > 0 (If a < 0 it suffices to change the
sign of bothx andz). Let us first look at the ultradiscrete case. For this we must assume
that b > 0, and choosing initial conditionsxn−1,xn > 0 we find xn+1 > 0. Thus we can
take the logarithm ofx and introduce the new variableX = ε logx whereε = 1/ logλ.
Figure 2 shows a typical behaviour of the solution of (4.1) for positiveb where we have
plotted the variableX = logxn as a function ofn.

Clearly this behaviour is only vaguely reminiscent of that of the continuous PI: only
the growing oscillating part for positiven resembles the one of the solution of the latter.
The double poles present in the solution of PI are absent.

The u-limit corresponds toλ→∞ (or ε → 0) and leads to the equation

Xn−1+Xn+1 = max(Xn + n+ A,B). (4.2)

Going to the limit does not change the overall appearence of the solution of (4.2) as compared
with that of (4.1) presented in figure 2. Simply, the values ofX are now integers provided
we start with integer values forXn−1, Xn, A andB.

In order to obtain the continuous limit of (4.1), we introduce the following
transformations:x = β(1 + ε2w) and z = 2β(1 + ε4t) with b = −β2 and t = nε.
The essential observation here is that for the continuous limit to exist we must haveb < 0.
In the limit ε → 0, we obtain the continuous PI in the form

w′′ + w2− 2t = 0. (4.3)

In figure 3 we plot the solution of (4.1) forb < 0 where we representX = x/β − 1 as
a function ofn. The appearance of poles is now clear.

These two simulations confirm our statement that the solution of the discrete equation
contains the full richness of behaviour. In the particular example studied here, depending
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Figure 3. Solution of the d-PI (4.1) corresponding tox0 = 0.1, x1 = 0.025,λ = 1.04,a = 0.135
andb = −0.01. Note the appearance of poles for large negativens.

on the sign ofb, we find ourselves either in the ultradiscrete or the continuous domain
of behaviour. The precise limits are not essential: as soon as the sign ofb changes, the
qualitative changes in the solutions set in.

Finally, let us for the sake of completeness study the caseb = 0. In this case (4.1)
becomes

xn−1xn+1 = zxn (4.4)

and introducing againX = ε logx we have the linear equation

Xn−1+Xn+1 = Xn + n. (4.5)

The solutions of (4.5) is straightforward:X = n+µjn+ νj2n wherej = eiπ/3, i.e. a linear
growth with a superimposed oscillating pattern of period 6.

5. Conclusion

In the preceding sections, we have studied the special solutions of the u-Ps. We have shown
that the analogue of the bilinear formalism exists also in the ultradiscrete case and that it can
be used in order to construct the ultradiscrete analogue of the Casorati determinant solutions
of the Ps. This work is a first exploratory investigation in this direction: a complete study
of the special solutions of the u-Ps will necessitate a considerable effort (as a matter of fact,
this programme is not yet complete even in the continuous and discrete cases).

The autonomous limit of the u-Ps has also been considered. In analogy to the continuous
and discrete cases we expected the equations to possess an explicit invariant and be solved
in terms of elliptic functions. We have shown that these statements are true and we have
explicitly constructed the ultradiscrete analogue of elliptic functions.
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Finally our work has (hopefully) helped to illustrate the fundamental character of the
discrete equations. Choosing the specific example of PI, we have shown by detailed
numerical simulations that the discrete PI can exhibit behaviours reminiscent of both the
continuous and u-PI depending on the sign of a parameter. This is a further indication that
the discrete equations are the fundamental entities of the integrable world.
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